Generic Darwinian selection in catalytic protocell assemblies.

نویسندگان

  • Andreea Munteanu
  • Camille Stephan-Otto Attolini
  • Steen Rasmussen
  • Hans Ziock
  • Ricard V Solé
چکیده

To satisfy the minimal requirements for life, an information carrying molecular structure must be able to convert resources into building blocks and also be able to adapt to or modify its environment to enhance its own proliferation. Furthermore, new copies of itself must have variable fitness such that evolution is possible. In practical terms, a minimal protocell should be characterized by a strong coupling between its metabolism and genetic subsystem, which is made possible by the container. There is still no general agreement on how such a complex system might have been naturally selected for in a prebiotic environment. However, the historical details are not important for our investigations as they are related to assembling and evolution of protocells in the laboratory. Here, we study three different minimal protocell models of increasing complexity, all of them incorporating the coupling between a 'genetic template', a container and, eventually, a toy metabolism. We show that for any local growth law associated with template self-replication, the overall temporal evolution of all protocell's components follows an exponential growth (efficient or uninhibited autocatalysis). Thus, such a system attains exponential growth through coordinated catalytic growth of its component subsystems, independent of the replication efficiency of the involved subsystems. As exponential growth implies the survival of the fittest in a competitive environment, these results suggest that protocell assemblies could be efficient vehicles in terms of evolving through Darwinian selection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The origins of cellular life.

Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially locali...

متن کامل

Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies.

Mutually catalytic sets of simple organic molecules have been suggested to be capable of self-replication and rudimentary chemical evolution. Previous models for the behavior of such sets have analyzed the global properties of short biopolymer ensembles by using graph theory and a mean field approach. In parallel, experimental studies with the autocatalytic formation of amphiphilic assemblies (...

متن کامل

A Simple Peptide Spontaneously Anchors Rna to Giant Lipidic Vesicles

In order to understand the transition from chemical evolution to Darwinian evolution, we are attempting to synthesize extremely simple artificial cells. I will present recent experimental progress towards the development of one of the key components of such a protocell, namely a self-replicating nucleic acid genome. INTRODUCTION, RESULTS AND DISCUSSION, CONCLUSION The earliest living cells must...

متن کامل

Competition between model protocells driven by an encapsulated catalyst.

The advent of Darwinian evolution required the emergence of molecular mechanisms for the heritable variation of fitness. One model for such a system involves competing protocell populations, each consisting of a replicating genetic polymer within a replicating vesicle. In this model, each genetic polymer imparts a selective advantage to its protocell by, for example, coding for a catalyst that ...

متن کامل

Sufficient conditions for emergent synchronization in protocell models.

In this paper, we study general protocell models aiming to understand the synchronization phenomenon of genetic material and container productions, a necessary condition to ensure sustainable growth in protocells and eventually leading to Darwinian evolution when applied to a population of protocells. Synchronization has been proved to be an emergent property in many relevant protocell models i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 362 1486  شماره 

صفحات  -

تاریخ انتشار 2007